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EQUILIBRIUM DISCHARGE FROM A NOZZLE OF A MIXTURE OF AN IDEAL

GAS AND A CONDENSING VAPOR
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Within the framework of the theory of ideal gases, an examination is
made of equilibrium discharge of a mixture of a gas and a condensing
vapor from a nozzle. The basic equations describing discharge are
presented, as well as the results of calculations of the discharge from
a nozzle of a mixture of air and water vapor.

Depending on the expansion rate and the degree of
impurity due to mechanical mixing (dust particles,
ete.), the discharge of a mixture of a gas and a satu-
rated vapor of any liguid may have either a nonequi-
librium (with condensation shocks) [1] or an equilib-
rium character. We shall examine the equilibrium
discharge of such a mixture from a nozzle, making
a number of assumptions to permit the problem to be
appreciably simplified.

We assume the following conditions: a) the flow is
steady and one-dimensional, and there is no heat ex~
change with the surrounding medium; b) the expansion
process ig an equilibrium one, and the mixture is com-
pletely homogeneous; c¢) the expansion takes place in
regions far enough from critical points for both the
gas and the dry saturated vapor to be considered as
ideal gases; d) at the start of the expansion of the mix-
ture, the vapor is in the dry saturated state; e) the
specific heat of the gas ig constant; f) the velocity of
particles formed in equilibrium condensation of the
vapor is equal to that of the flow itself (i.e., the flow
is also considered to be in equilibrium with respect
to veloeity).

The last supposition requires some clarification.
The author's calculations show that the velocities of
particles formed during equilibrium condensation of
a moist vapor are very close to the velocity of the
vapor. This is explained by the fact that the initial
size of the particles is very small, and so they are
easily entrained by the vapor, In addition, the vapor
molecules condensing on the surface of a particle have
a mean velocity equal to that of the vapor stream at
any section; this also leads to increase of particle
velocity.

Calculation also shows that because of the small
difference between the velocities of the particles and
the vapor, the losses in friction of the vapor against
the particles are negligibly small, Therefore, ne-
glecting also, for simplicity, the usual losses in fric-
tion of the vapor against the nozzle walls, the expan-
sion process may be considered isentropic.

As is known from the theory of mixing of ideal gas-
es, the density of the components of a mixture is de-
termined from the partial pressures and the tempera-~
ture. Then the temperatures (and also the velocities)

of all the components are considered identical, be-
cause of the assumed homogeneity of the mixture, We
may therefore write an independent mass flow equa-
tion for each component of the mixture, and for the
mixture of gas and dry saturated vapor examined here
the equations have the form:

ng Ggo = Fpgc,
Gy=Gy,x = Fpc.

Referring the first equation to 1 kg of gas, it may
be put in the form

1—f%
h Pp T ’ @
where
f=F/F, c=clc,, ~=TIT,.

Dividing the second equation by the first, we ob~-
tain the following ratio between the concentrations of
gas and vapor:
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Under the assumption of equal velocities of gas,

vapor, and condensate particles, the momentum equa-

tion of the mixture may be written in the form
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The second term on the right of this equation is
due to the presence, in 1 kg of gaseous components
of the mixture, of g, (1 - x)/x kg of condensate par-
ticles. This egquation, referred to 1 kg of working sub-
stance (i.e., mixture of gas, dry saturated vapor,
and condensate particles), may be written in the fol-
lowing integral form:

*‘ ggo — &yo
Joog

dp e—c
TrX= T @)
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The left side of this equation is the sum of partial
work done in expanding g0 kg of gas and gy, kg of
moist vapor, respectively.

Using the energy equation and some other relations
to determine the form of the functions Pg, Py and x,
we may calculate values of the integrals which appear
in the expressions for partial work of the gas and
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Tig. 1. Dependence of the degree of dryness, x, of the
vapor component of the mixture on dimensionless mix-
ture temperature 7 = T/To, when m = 4, 3,5, and 3
(continuous, broken, and dot-dash lines, respectively)
and gy = 0.1 (1), 0.5 2), 1 (3), 2 (4), and = (5).
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Fig. 2. Dependence of dimensionless mixture tempera-
ture T on the mixture pressure drop 7y = Pm/pmo when
m =4, 3,5, and 3 (continuous, broken, and dot-dash

lines, respectively) and g = 0.1 (1), 0.5 (2), 1 (3), 2 (4),
= (5); curve 6 refers to pure air (g, = 0).
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moist vapor. We shall show, however, that a deter-
mination of the total work in expanding the mixture
may be accomplished in another, simpler manner, and
to do this we shall examine in more detail the process
of expanding a gaseous and vapor phase.

When a mixture is expanded the vapor condenses.
Part of the heat of condensation then liberated is sup-
plied to the gas and increases its work capacity some-
what in comparison with the case of adiabatic expan-
sion. Therefore the work of expanding 1 kg of gas in
this case may be represented in the form

dp
Hy= — [ g
o Pg

where Hg.ad = epgTy[1 - (pg/pgo)(k'i)'/k] is the work in
adiabatic expansion of 1 kg of gas, and AAQ is the in-
crease in work capacity of 1 kg of gas due to the sup-
ply of heat in the expansion process.

When the mixture cools by dT during expansion,
(~gV0/gg0)dx kg of gas is condensed and r(gvo/ggo)dx
of heat is liberated; in addition, (gvc/ggn)(l - x)eprdT
of heat is liberated in cooling by dT(gy,/ggy)(1 — x) kg
of condensate, The heat liberated is, altogether,

= Hg.ad'%“ A Aq,

dQ=—r BB g B (| )¢, dT.
Ggo Bgo

Part of the heat released, however, goes to heating
the vapor phase, which remains throughout in the dry
saturated state, As is known [2], the specific heat of
a vapor, when its state is changed along the right
branch of the boundary curve, is equal to

dr r
= Cpj + ——— — —.
YEST T T
Therefore, the amount of heat that goes to heat (g,/
/ggo)x kg of vapor is

dQ, A xc dT = Bvo ygr 4 Bw (vﬂ[ ——L) xdT.
g o B T
Thus, the heat supplied to 1 kg of gas is

dQy = dQ — dQy =

e B [d(r,\') ey dT— Lt l . )
[ T .

This amount of heat increases the work capacity
of the gas, in comparison with the adiabatic process,
by an amount

dAy = (1 - T, TydQy
The total increase in work capacity of the gas due to
supply of condensation heat is

r 2
) ¢ dQg
Ad, = \‘ dQg—T | .

To 7
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Substituting the expression for dQg and carrying out
the integration, we obtain
AAp =
T

g T) T g‘ il —l
- Il — — | (rgt-cy Ty + ¢, Thn — ~—dT .
ggn [( 0 ( ‘ o * & T0+ . T _5

We also transform to some extent the expression
for the work of expansion of the vapor, appearing on
the left side of (3). From the Clausius-Clapeyron
equation [2]

dpy d (5)

e ——— ey

dT TWVy—V,)

neglecting the specific volume of condensate V; in com-
parison with the specific volume of the dry saturated
vapor, we easily obtain

dpy dT.

-
T

Dy

Thus, the work in expanding 1 kg of moist vapor is

ry T

Py To

Using the relations obtained for the work of the
gaseous and vapor phases, we may put the left side
of (3) in the form

Hm - ggn(‘pgT(]l I - (pg/’pg())(k‘”‘k] +

+ 8yl =TT+ Ty A ¢ TIN(TT)L (6)

The second term on the left of this equation is
known to be the work in expanding gy, kg of moist
vapor adiabatically. We thus obtain the result that
the total work of expansion of 1 kg of mixture is equal
to the sum of the available work of gg, kg of gas in
an adiabatic expansion from the initial to the final
partial pressures, and of the available work of g, kg
of vapor in an adiabatic expansion from the initial
state to the final temperature of the mixture.

Taking into account the last relation and assuming
r to be a linear function of temperature (r =a — bT),
the momentum equation of the mixture (3) may be put
in the following dimensionless form:

I—(pg pe)® vh— (m—1) et . @Y
([1[ (‘ng

o A(} wr)( P et 1 1 Cpi Thnt y _M?““’— i
bhoomo 1 Hoom—1 Hgn s

gy By g Mm=a DT, &~ 2(‘,,ng,‘

We shall now derive the equations of the processes
of expansion of the gaseous and vapor phases, When a
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Fig. 3. Dependence of the dimensionless available energy

ﬁm = Hm/cpgT0 of the mixture on the mixture pressure

drop 7y, with m =4, 3.5, and 3 (continuous, broken, and

dot-dash lines, respectively) and g, = 0.5 (1), 1 2), 2 (3),
w© (4); curve 5 refers to pure air (g, = 0).
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Fig. 4. Dependence of relative nozzle area f = F/F, on

dimensionless flow velocity ¢ = c¢/¢y, with 6 = 0,01 (I) and

0.02 (O); m=4, 3,5, and 3 (continuous, broken, and dot-

dash lines, respectively)and g, =0.5 (1), 1 2), 2 (3),
 (4), and 0 (5).
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certain amount of heat of entropy is supplicd to the
gas during expansion, its 8 increases. At the same
time, the temperature Ty and the enthalpy ig] of the
gas at the final pressure p; increase. When an amount
of heat ng is supplied, the enthalpy increases by

. . dQ
dig,  GgdTo TS =T, - .
Hence
AT W
T, Tepy

where ng is determined from (4).

Integrating this equation, and bezring in mind that
when T =Ty, Ty=Tad, x=1, r=rj, atthe end of
the expansion T = Ty, and that Ty/Tyq = (pgo/pgl)(k'i)/k
(where Tad is the final temperature in an adiabatic ex-
pansion of the gas), we finally obtain the following re-
lation between the partial pressure of the gas and its
temperature during expansion in the mixture:

k [ s
e i o

by dlm o
B g exp By o
pg‘, k—1 "Pg
S (,;1—1)(_’7’_‘--*;—1 m
Cpl m—1 =

We shall find an analogous relation between the
pressure and the temperature for the vapor phase.
From the Clausius-Clapeyron equation (5), using the
equation of state for ideal gases, we obtain

dpy rdT

by ORI

In the case r = a — bT, this equation may easily be
integrated, the solution having the form

b 1
_rIIF(I—~—r—)] (8)
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D
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Dividing (8) by (7) and taking account of (2), we obtain
the following expression for determining the degree of
dryness x of the vapor as a function of the dimension-
less temperature 7 of the mixture:

X = exp Lok gt --—L)lll L
R, fk—1°V Cog k—1 T

0 1 k- b
X ‘ex (m —— ( - — l) g () e
l p { RV T k1 V( ('pl
Cpl (ﬂ:’n S } 1
('pg m-—-1 1 ;

This equation contains six characteristic parameters:
k, 0/Ry, cp ’c',,g‘ bicpr, &y, M.

Of these, the first four depend only on the physical
constants of the gas or vapor; therefore discharge
of a mixture of given components is fully determined
by the remaining two parameters:

gy gv()/ﬁ-’gn and m = a‘/brn'
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From (9) it is easy to obtain values of the degree
of dryness of the vapor when its content in the mixture
is very small or very large. In fact, let g, — 0 (i.e.,
the gas has insignificant vapor impurity). In this case

Xo== lm oy - [cxp {Kn ]‘ (L -+ »»—~—k ]
. T R, fo—1 J

Z’V
l ',,IL<_‘__1>]1“1‘
Ry V1 1)

X (CXP
In the case EV — « (flow of a condensing vapor with
insignificant gas impurity), Eq. (9) may be brought
to the following form:

[ -
X =x,0xp] et &y
tk—1 Cog

X(ﬂ~f L~1>J\,
m—1 g {
Since the degree of dryness of the vapor is 0 = x = 1,

i,e., its value is considerably limited, we must have,
when gy, — «,

b

X

an— —{m—1)-
_ T Cpl

n L 1y =2 (-’”‘T JE——J)—»O.
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From this expression we easily find the limiting val-
ue of x when gy — «:
m—1 € tlnt

Xo = limx = T —
e M b

m-——vx

The expression obtained agrees with the usual
equation for the dryness of a vapor adiabatically ex-
panded from the dry saturated state,

Investigation of discharge of a mixture of air and
water vapor, We shall examine equilibrium discharge
from a nozzle of a mixture of air and water vapor,

In this case we may assume [2]: a = 3200 kJ/kg, b=
=2,52 kJ/kg -°K; r=3200 —~ 2,52 T; Ry = 0,461 kJ/
/kg -+ °K; Ry = 0.288 kJ/kg - °K; cpy = 4.2 kJ /kg x
x °K; cpg = 1.01 kI /kg « °K; therefore the first four
parameters of (9) will have the following values:

k= 1.4; DR, 545, C,/cpg=4.16; bic, =0.6.

Equation (9) is solved by trial and error. The re-
sults of solving it with the above values of the fixed
parameters and various values of the quantities E\,
and m are shown in Fig. 1. Figure 1 also shows the
limiting values of x when a pure vapor is expanded
(Ev — w),

As may be seen by comparing the curves, the dry-
ness resulting from expansion of the vapor in the mix-
turc is appreciably less than in an adiabatic expansion
of the pure vapor; the difference increases rapidly as
the air content of the mixture is increased, Thus,
condensation of the vapor in the air stream is much
more intense than in an adiabatic expansion of moist
vapor, This is due to the fact that the gas phase
strongly absorbs the heat emitted in condensation
and plays the role of a cooler for the vapor phase.
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It should be noted that in the case of a very small
adiabatic exponent the reverse picture may be ob-
served, where the vapor phase is dried during ex-
pansion of the mixture, because of the additional sup-
ply of heat from the gas.

The quantity 7y, in Fig. 2 is determined from the
formula

p Py _
T, . == g+pv = ( g + pV RV gv) X
Pgo 1 Py P Pvo  Rg :
N, RV =\
X1+ gy ,
Rg J

where py/py, and pg/pgo = py/PyX are found from (8)
and (7), using the value of x determined above,

It may be seen from Fig, 1 that the mixture tem-
perature drops more slowly with decrease of my, than
does the temperature of pure air (lower curve). When
the vapor concentration is about 30% and over, the
mixture temperature during expansion approximates
to the temperature of the pure vapor (EV — o),

The quantity ﬁm in Fig. 3 was calculated accord-
ing to (6), transformed to the form

_ P, (h—1)/k ¢
Hm=ggo [I '—(J“‘) :| '{’gvo Cpl X

Pgo g
’ b
% [(m——l) +1H1_—1+
Cpl
b
In= 1 — . 6!
—|—Tn/(+(m b )] 6"

As the water vapor concentration in the mixture is
increased, the available energy of 1 kg of mixture,
for the same degree of pressure drop, is consider-
ably increased, and approximates to the available
energy of the water vapor. The upper curves in Fig.
3 refer to pure water vapor (gy — «).

With the aid of the quantity Hyy, it is easy to deter-
mine the dimensionless stream velocity and the rela-
tive area of the nozzle, from the following formulas,
obtained from (3*) and (1):
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- _— n,
c= V14 Hyys, f=— &
¢ pg

It may be seen from the formulas that the quanti-
ties ¢ and f also depend on the parameter é = ¢}/
/ZCpgTO, which characterizes the initial kinetic en-
ergy of the flow.

It may be seen from Fig, 4 that both the concen-
tration and the properties of the vapor have an appre-
ciable influence on the flow-passage cross section of
the expanding part of the nozzle. For a single value
of relative velocity, the required nozzle area proves
to be least for pure vapor. The influence of these pa-
rameters is insignificant in the convergent part of the
nozzle, We note also that as the vapor concentration
in the mixture increases, the throat section of the noz-
zle shifts in the direction of greater velocities.

NOTATION

G~—phase mass flow rate; T, T;—temperature, and temperature
of lowest heat source; p—partial pressure; p—density; c—velocity of
sound; R—gas constant; k-—adiabatic exponent of the gas phase; 1—
heat of vaporization; cp—-specific heat at constant pressure; F—cross-
sectional area of nozzle; x—degree of dryness of vapor; gg = Gg/ (Gg +
+ Gy) and gy = Gy/(Gg + Gy)—stream mass concentrations of gaseous
and vapor phases. Subscripts: g—gas; v—vapor; [—liquid; m—mix-
ture; 0—state at the beginning of expansion.
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